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ABSTRACT— We investigate the propagation of 

the normal two-photon number state and 

coherent state of light through a dispersive non-

Hermitian bilayer structure composed of gain 

and loss layers, particularly at a discrete set of 

frequencies for which this structure holds PT-

symmetric. We reveal how dispersion and 

gain/loss-induced noises in such a bilayer 

structure affect the antibunching property of the 

incident light. For this purpose, we have 

calculated the second-order coherence of the 

output state of the bilayer. Varying the loss layer 

coefficient, we show that the antibunching 

property of the incident light only retains to some 

extent, for small values of loss coefficient for the 

transmitted number state. 

KEYWORDS: Antibunching, Coherent state, 

Non-Hermitian, Number state, Parity-time 

(PT)-symmetric, Second-order coherence. 

I. INTRODUCTION 

Parity-time (PT-) symmetric systems are non-

Hermitian but can exhibit entirely real spectra 

as long as they respect the conditions of PT-

symmetry [1], [2]. A PT-symmetric 

Hamiltonian is invariant under the combination 

of the parity operator, P̂ , — i.e., p→−p and 

r→−r — and the anti-linear time-reversal 

operator, T̂ , — i.e., p→−p and r→−r and 

i→−i — implying the satisfaction of the 

condition V(r)=V*(−r) for the complex 

quantum potential, V(r) should satisfy [2]. In 

other words, the real (imaginary) part of the 

potential, is an even (odd) function of position 

r. Although complex quantum potentials do not 

exist in nature [2], their analogs have been 

realized in optical systems owing to the formal 

equivalence between the time-dependent 

Schrödinger equation and the optical paraxial 

wave equation. In this equivalence, an 

artificially made refractive index, n(r), plays the 

role of the potential, particularly in 

multilayered photonic metamaterials with 

balanced gain and loss, satisfying 

Re{n(r)}=Re{n(−r)} and 

Im{n(r)}=−Im{n(−r)}. Such metamaterials 

render non-Hermitian systems with real 

eigenvalues [3]-[5]. The two latter relations, 

together, solely represent the necessary 

condition for the so-called exact phase regime. 

Nonetheless, beyond a critical value of 

gain/loss strength (i.e., the so-called 

exceptional point), the system eigenvalues 

become complex, in which case the system is in 

a broken PT-symmetric phase [1], [2]. 

The effects linked with PT-symmetric systems 

have been investigated comprehensively in 

classical optics during the past decade [6]-[10]. 

It has been revealed that these media can exhibit 

exotic features, like optical switching [6], 

nonreciprocal propagation [7], reflectionless 
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unidirectional transmission [8], and optical 

isolation [9]. 

For the incident light of a nonclassical nature, 

there are some features such as quadrature 

squeezing, photon statistics, and second-order 

coherence that can only be described in the 

framework of the full quantum theory. Over the 

past decade, only a few research groups have 

focused on the nonclassical effects of the 

propagation of the optical pulses through 

structures that hold PT-symmetry [11]-[17]. In 

our recent work [16], we have extensively 

studied the behavior of obliquely incident s- 

and p-polarized quantum states after 

transmitting through dispersive non-Hermitian 

multilayered structure, particularly at discrete 

frequencies that the medium holds PT-

symmetry. We have investigated to see to what 

extent the transmitted light could retain its 

original nonclassical features, like the 

squeezing and sub-Poissonian photon statistics. 

Our findings show one cannot implement PT-

symmetry at any arbitrary angle of squeezed 

states of incidence for either polarization in the 

quantum optics domain as far as the squeezing 

feature of outgoing light is concerned. 

Although this situation is changed if one only 

probes the sub-Poissonian photon statistics of 

outgoing light, it seems the structure whose 

incidence frequency is far from the emission 

frequency of the gain layer. Here, we focus on 

the second-order coherence of the normally 

transmitted coherent and M-photon number 

states through a dispersive non-Hermitian 

bilayer medium, which holds PT-symmetric at 

a particular frequency. Besides, we study the 

effects of the dispersion and the loss(gain)-

induced noises on the antibunching property of 

incident light for various loss coefficients to 

study the coherence modifications with time 

delays between two temporally separated 

intensity signals with the time difference from 

one input. 

II. METHOD 

A. Bilayer Structure 

We consider a bilayer structure that is 

composed of two gain and loss slabs of identical 

thickness l (and infinite extent along the x and y 

directions) paired along −l<z<0 and 0<z<l, 

respectively. The bilayer is embedded in a 

vacuum for |z|>l (Fig. 1). Here, the complex 

permittivity of the gain/loss (g/l) slabs can be 

written as [18], [19], 

( ) / /

/

/

/

/

/

.= −
− +

g l g l

g l

g ll

g l

g l

gi

  
  

  

0

0 2 2
0

 (1) 

where ε0 represents the medium background 

permittivity, ω0 is the emission frequency, γg/l 

indicates the gain/absorption linewidth, and αg/l 

is the gain/absorption coefficient. Due to the 

causality principle, the loss slab parameters 

satisfy αl>0 and γl>0, while those of the gain 

slab satisfy αg<0 and γg>0. To guarantee the 

structure to be PT-symmetric, we require an 

exact balance between the gain and loss of two 

slabs as follows: 

g g .Re Re  and Im I( ) ( ) ( ) (m )l l       = = −

 (2) 

which can be satisfied only for a discrete set of 

real frequencies [20]. 

 
Fig. 1. A 3D representation of a non-Hermitian 

bilayer structure consists of gain and loss slabs with 

an identical thickness of l along the z-direction. The 

arrows normal to the x-y plane represent the bosonic 

operators of the input and output modes. 

B. The Exact Multilayer Theory 

Consider an optical beam of light normally 

incident upon the bilayer. According to the 

canonical quantization of the electromagnetic 

field in the presence of a medium, the positive 

frequency component of the electric field 

operator is [21]: 
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where ℏ, ε0, A, and c are the reduced Planck’s 

constant, the vacuum permittivity, the area of 

quantization in the x-y plane, and free space 

light velocity, and R(L) denotes the right (left) 

going propagation wave. The negative 

frequency component of the electric field 

operator is obtained by taking the Hermitian 

adjoint of (2) — i.e., ( ) ( )( ) ( )†ˆ ˆ, ,− +=j jE z t E z t  . 

An explicit characterization of the structure can 

be obtained by assigning the input-output 

mapping that links the output bosonic 

annihilation operators 
( ) (ˆ , )−La l 1

 and 

( ) ( , )ˆ
Ra l 4

 with their input operators 
( ) (ˆ , )−Ra l 1

 

and 
( ) ( , )ˆ
La l 4

, and also the noise operators, 

( )( )
ˆ
R LF  , as follows [22]-[23], 
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where ,
 

  
 

L

R

r t

t r
 (4b) 

Moreover, the multiple transmissions t and 

right(left) reflections, rR(L) of the incident light 

through/from the bilayer binaries at −l and l are 

described by the same scattering matrix 𝕊σ 

analogous to the classical optics. Albeit, the 

quantum noise ( )
ˆ

R LF  originating from all layers 

with either gain or loss has no classical 

analogous. The optical input operators satisfy 

the bosonic commutation relations: 

( ) ( ) ( ) ( )

( )

( ) ( )† ( ) ( )†ˆ ˆ ˆ ˆ, ,

.

   =    

= −

R LLRa a a a   

  

1 1 4 4

 (5) 

substituting Eq. (4a) into (5) results in a similar 

bosonic commutation relation for the outgoing 

operators: 

( ) ( ) ( ) ( )

( )

( ) ( )† ( ) ( )†ˆ

.

ˆ ,ˆ, R LR La a a a   

  

   =    

= − 

4 4 1 4

 (6) 

III. THE SECOND-ORDER 

COHERENCE 

To illustrate the effects of the bilayer structure 

in quantum optics, we consider the specific case 

(same as those used in [13]-[19]) that satisfy the 

necessary condition for the PT-symmetry 

system in (1)-(2): ω0l=ω0g=1 PHz, γl=γg=0.067 

PHz, and ε0l=ε0g=2 i.e., (Δε=0), we achieve PT-

symmetry at ωPT/ω0g=1 for arbitrary values of 

|αg|=αl. The thickness of the loss/gain slab along 

the z-direction is 10 nm. A practical example of 

the proposed bilayer structure could be the 

plasmonic metamaterial suggested by [24]-

[26], grown on a lossless glass substrate 

wherein the quantum noise flux vanishes. 

In what follows, we use the above parameters 

to numerically analyze the structure under 

study. We know that the thermal noise effect at 

room temperature and zero Kelvin, for the 

given incident frequency, are both insignificant 

[15]. Henceforward, we consider keeping the 

gain and loss layers at 0 K. In this section, we 

study how the second-order correlation 

function [21] 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(4) (4) (4) (4)

(4) (4) (4) (4

2
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, ,
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t t t t

t

E z E z E z E z

E z E z E z E zt t t



 

 

− − + +

− + − +

=

+ +

+ +

 (7) 

of a quantized electromagnetic field is modified 

by the passage through the structure of Fig. 1. 

The intensity correlation in (7) is proportional 

to the joint probability of detecting photons at 

two times t and t+τ. This function quantifies, 

how the detection of one photon from a light 

source influences the probability to detect 

another one. It usually decays to 1 on timescale 

τ comparable to the coherence time of the light 

field. The intensity fluctuations for the 

transmitted light already allow one to 

distinguish between bunching (g(2)(τ=0)>1), 

coherent (g(2)(τ=0)=1)), and antibunching 

(g(2)(τ=0)<1) (quantum features of light) light 
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emission. If the arrival of one photon is detected 

then there is an increased possibility of another 

photon arriving soon afterward. This 

phenomenon is called photon bunching. In 

other words, photon antibunching is the 

tendency of photons to gather together 

randomly in time rather than appear in groups. 

The important difference between the classical 

and quantum mechanical description is that, in 

the latter case, the detection of a photon at t 

reduces the number of photons at t+τ. In the 

following, we investigate (7) two transmitted 

M-photon number states and coherent states 

through the structure of Fig. 1. 

A. Number State 

The general state of the system is represented 

by the product state of the form 

, 0 .
R L

M F   (8) 

in which |0〉L and |M,𝜉〉R, are the left-going 

vacuum state and right-going number state, 

respectively, and |F〉 is associated with the noise 

contribution of the slab arising from amplifying 

slab at zero temperature. The number state can 

be generated with the use of a quantum operator 

acting on the vacuum of the form [21] 

( ) ( )* (1)†

0

,

1
ˆ 0 ,

!

M

R

R M

d a
M



  


 =

 
  

 (9) 

where ξ(ω) describes the frequency distribution 

of the photon-number wave packet, whose form 

is determined by how the photon state is 

prepared such as the nature of the incident light 

and any subsequent filtering process. Here, we 

consider a Gaussian wave packet distribution 

centered on the frequency ωPT and the mean-

square spatial length L2 as [21] 

( ) ( ) ( )
1/4 22 2 2 22 exp 4PTL c L c     = − −

 
 (10) 

After some lengthy mathematical 

manipulations using (3) and (7)-(10), one can 

obtain a compact formula for the second-order 

correlation function (7) in region 4 for the 

transmitted number state at t=z/c as 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 

(2)

2 2

1 1

2 2

2 1 1

2* 2

1 1 2 2 2
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2 2

1 2 1 2

g ( )

M M 1 I 0 I

0 I 0 I

2M Re I 0 I I I I 0

[M I

M

0

I

I 0 ][M I I 0 ] .
−

 =

− 

 + + 
 

 +   +  + 

 +  +

 (11) 

where in the explicit forms of the I1 and I2 are,  

( ) ( )1/2

1 0
0

4 ( ) ,


− 
iI cA d e t      

 (12a) 

( ) ( )†

2
0

0

ˆ ˆ( )
4


− 

i

R RI d e
A

F F
c

  


 


 (12b) 

where ( ) ( )†ˆ ˆ
RRF F   is the average flux of 

the noise photons, which is given by (B7) in 

[15] for the exact multilayer theory. The 

dependency of the second-order coherence (11) 

on the dimensionless time delay, τ ωPT, is 

plotted in Fig. 2 for a two-photon Gaussian 

wave packet transmitting through the proposed 

structure. For the sake of clarity, we focus on 

four special values of loss coefficients, i.e., 

|αg |=αl=24, 114 (anisotropic transmission 

resonance), 52 (accidental degeneracy), and 

890 (exceptional point) which their 

significances are given in [15]. 

The results show that the transmitted light is 

antibunched for |αg |=αl=24, 52, and 114. Then, 

by increasing τ, each plot for the given angles 

first increases sharply and reaches a maximum 

value, approaching a near-unity value, 

saturating for τ∙ωPT>1.5. While for |αg|=αl=890 

and τ=0, g(2)(0)=2 due to the noise dominating 

the pulse contribution at elevated αl. Our results 

show that despite the apparent compensation of 

the losses within the bilayer in the PT-

symmetry phase, the outgoing light is no longer 

antibunched for |αg|=αl=890. Because the gain 
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layer adds noise to a beam of light at zero 

temperature, having detrimental effects on the 

antibunching feature of the quantum light. 

Therefore, we see that at elevated values of αl 

the output photons are bunched. 

 
Fig. 2. The second-order coherence g(2)(τ) versus 

τ∙𝜔PT  for two-photon wave packet transmitted 

through the bilayer structure for αl=24, 52, 114, and 

890. 

B. Coherent State 

One of the most important classes of states in 

quantum optics is coherent states. The coherent 

state |α〉 is generally introduced as the 

eigenstate of the non-Hermitian annihilation 

operator associated with the complex 

eigenvalue [27] 

(1)ˆ .Ra   =  (13) 

This state can also be represented easily by 

operating the unitary displacement operator on 

the vacuum state |0〉, 

(1)† * (1)ˆ ˆexp 0 .R Ra a   = −   (14) 

The coherent state possesses a better-defined 

phase than the number state. Accordingly, it is 

described as a state most closely to the classical 

kind of behavior. 

In this section, we consider that the incident 

rightward and leftwards fields on the slab are 

the monochromatic coherent state and 

conventional vacuum state respectively. Using 

the method outlined in [21], and making use of 

the input-output relation (4), and after some 

algebraic calculations using (3) and (13)-(14), 

we obtain the second-order correlation function 

(7) in the region 4 for transmitted coherent state 

at t=z/c as: 

( ) ( ) ( )



 

(2)

2 2 *

1 1 1 1 2

2 2

2 1 1

1
2 2

1 2 1 2

( )

(0) ( ) 2Re 0

(0) (0) ( )

(0) (0) ( ) (0)
−

=

 +  

 + +
 

    + +
   

g

I I I I I

I I I

I I I I



  





 (15) 

 
Fig. 3. The second-order coherence g(2) (τ) versus 

τ∙𝜔PT  for coherent state transmitted through the 

bilayer structure for αl=24, 52, 114, and 890. 

The dependency of the second-order coherence 

(11) on the dimensionless time delay, τ ωPT. for 

the coherent states transmitting through the 

proposed structure with |αg |=αl=24, 52, 114, 

and 890. The results show that as τ → 0, g(2) > 1 

for all cases of |αg|=αl=24, 52, 114, and 890 due 

the noise dominating the pulse contribution. 

Therefore, for each loss coefficient, we find that 

the output photons are bunched, and this 

bunching effect enhances slightly as the 

loss/gain coefficient inside the bilayer 

increases. Moreover, for large values of τ, the 

second-order coherence progressively tends to 

unity — i.e., g(2)(τ 𝜔PT≫1)~1, because photon 

arrival times are not correlated if the photons 

are detected in a larger time intervals. 

IV. CONCLUSION 

In this paper, we have investigated the 

dispersion and medium effects of a bilayer non-

Hermitian structure on the antibunching 

property of a transmitted number and coherent 

states of normally-incident light at zero 

temperature, particularly at a specific frequency 

for which the bilayer holds PT-symmetric. We 

have calculated the second-order coherence at 

the output of bilayer versus dimensionless time 

delay for different values of loss coefficients, 

keeping the incident signal frequency fixed at 

the corresponding frequency where PT-
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symmetry holds. Although we observe the 

compensation of loss effect within the PT-

symmetric bilayer in the exact phase regime, 

the transmitted light is no longer antibunched 

for large (all) values of loss coefficients for the 

incident number (coherent) state. One may 

attribute this effect to the contribution of the 

quantum noise within the PT-symmetric 

structures at ω=ωg, originating from the gain 

nanolayers at zero temperature. 
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